Homepage Solution manuals John Lee Introduction to Smooth Manifolds Problem 10-7 (Transition function determined by stereographic coordinates)

Problem 10-7 (Transition function determined by stereographic coordinates)

Compute the transition function for T 𝕊 2 associated with the two local trivializations determined by stereographic coordinates (Problem 1.7).

Answers

Import all of the definitions from Problem 1-7. For the tangent bundle π : T 𝕊 2 𝕊 2 given by π ( v p ) = p , we define two smooth local trivializations constructed as in the proof of Proposition 10.4 (Eq. 10.1):

Φ : π 1 ( 𝕊 2 { N } ) T 𝕊 2 𝕊 2 { N } × 2 , Φ ( v p ) = Φ ( i = 1 2 v i x i ) : = ( p , i = 1 2 v i e i ) (1) Ψ : π 1 ( 𝕊 2 { S } ) T 𝕊 2 𝕊 2 { S } × 2 , Ψ ( v p ) = Ψ ( i = 1 2 v ~ i x ~ i ) : = ( p , i = 1 2 v ~ i e i ) (2)

Following the definition in Lemma 10.5, we compute the transition map

Ψ Φ 1 : 𝕊 2 { N , S } × 2 𝕊 2 { N , S } × 2

which is given by

Ψ Φ 1 ( p , v ) = Ψ ( i = 1 2 v i x i ) = Ψ ( i = 1 2 v i ( x ~ 1 x i x ~ 1 + x ~ 2 x i x ~ 2 ) ) = Ψ ( j = 1 2 ( v 1 x ~ j x 1 + v 2 x ~ j x 2 ) x ~ j ) = ( p , j = 1 2 ( v 1 x ~ j x 1 + v 2 x ~ j x 2 ) e j ) = ( p , v 1 x ~ 1 x 1 + v 2 x ~ 1 x 2 , v 1 x ~ 2 x 1 + v 2 x ~ 2 x 2 ) = ( p , [ x ~ 1 x 1 x ~ 1 x 2 x ~ 2 x 1 x ~ 2 x 2 ] v )

We must calculate the change of coordinate coefficients ( x ~ j x i ) 1 i , j 2 at this point. In Problem 1-7, we have already calculated the transition map

σ ~ σ 1 = ( x ~ 1 , x ~ 2 ) : σ ( 𝕊 2 { N , S } ) σ ~ ( 𝕊 2 { N , S } ) , ( x 1 , x 2 ) ( u 1 ( u 1 , u 2 ) 2 , u 2 ( u 1 , u 2 ) 2 ) .

Inserting this into the change of coordinate formula (3.11), we obtain

x i | p = j = 1 2 x ~ j x i ( σ ( p ) ) x ~ j | p

Denoting the coefficients by ( x , y ) instead of ( x 1 , x 2 ) to work with exponents, we obtain:

x ~ ∂x = y 2 x 2 ( x 2 + y 2 ) 2 x ~ ∂y = 2 xy ( x 2 + y 2 ) 2 y ~ ∂x = 2 xy ( x 2 + y 2 ) 2 y ~ ∂y = x 2 y 2 ( x 2 + y 2 ) 2

We convert these into the original coordinates ( p 1 , p 2 , p 3 ) in 3 from the north pole coordinates ( x 1 , x 2 ) of σ as to match with the representation of p :

x ~ ∂x = ( 1 1 + z ) 2 ( y 2 x 2 ) x ~ ∂y = ( 1 1 + z ) 2 ( 2 xy ) y ~ ∂x = ( 1 1 + z ) 2 ( x 2 y 2 ) y ~ ∂y = ( 1 1 + z ) 2 ( 2 xy )

Thus, the transition function is given by

τ : 𝕊 n { N , S } GL ( 2 , ) , p ( 1 1 + p 3 ) 2 [ ( p 1 ) 2 ( p 2 ) 2 2 p 1 p 2 2 p 1 p 2 ( p 1 ) 2 ( p 2 ) 2 ] .

For the sake of completeness, we also provide the transition map of Φ Ψ 1 :

τ 2 : 𝕊 n { N , S } GL ( 2 , ) , p ( 1 1 p 3 ) 2 [ ( p 1 ) 2 ( p 2 ) 2 2 p 1 p 2 2 p 1 p 2 ( p 1 ) 2 ( p 2 ) 2 ] .
User profile picture
2023-09-10 09:18
Comments