Exercise 1.14

Discuss the solvability of a 1 x 1 + a 2 x 2 + + a r x r = c in integers. (Hint: Use Exercise 13 to extend the reasoning behind Exercise 6.)

Answers

Proof. Let a 1 , a 2 , , a r .

Note gcd ( a 1 , a 2 , , a r ) = a 1 a 2 a r . The following result generalizes Ex. 6 :

( x 1 , x 2 , , x r ) r , a 1 x 1 + a 2 x 2 + + a r x r = c a 1 a 2 a r c .

Let d = a 1 a 2 a r .

If a 1 x 1 + a 2 x 2 + + a r x r = c , as d a 1 , , d a r , d a 1 x 1 + a 2 x 2 + + a r x r = c .

Conversely, if d c , then c = d c , c .

As dℤ = a 1 + a 2 + + a r , so d = a 1 m 1 + a 2 m 2 + + a r m r , m 1 , m 2 , , m r . c = d c = a 1 ( m 1 c ) + a r ( m r c ) = a 1 x 1 + + a r x r , where x i = m i c , i = 1 , 2 , , r . □

User profile picture
2022-07-19 00:00
Comments