Exercise 1.24

Prove the identities

(a) x n y n = ( x y ) ( x n 1 + x n 2 y + + y n 1 )

(b) For n odd, x n + y n = ( x + y ) ( x n 1 x n 2 y + + y n 1 )

Answers

Proof. Let R any commutative ring, and x , y R .

a) Let

S = i = 0 n 1 x n 1 i y i .

Then

xS = i = 0 n 1 x n i y i = x n + i = 1 n 1 x n i y i yS = i = 0 n 1 x n 1 i y i + 1 = j = 1 n x n j y j ( j = i + 1 ) = y n + i = 1 n 1 x n i y i .

So xS yS = x n y n ,

x n y n = ( x y ) i = 0 n 1 x n 1 i y i = ( x y ) ( x n 1 + x n 2 y + + x n 1 i y i + + y n 1 ) .

b) If we substitute y by y , we obtain

x n ( 1 ) n y n = ( x + y ) i = 0 n 1 ( 1 ) i x n 1 i y i .

If n is odd,

x n + y n = ( x + y ) i = 0 n 1 ( 1 ) i x n 1 i y i = ( x + y ) ( x n 1 x n 2 y + + ( 1 ) i x n 1 i y i + + y n 1 ) .

User profile picture
2022-07-19 00:00
Comments