Exercise 1.32

For α = a + bi [ i ] we defined λ ( α ) = a 2 + b 2 . From the properties of λ deduce the identity ( a 2 + b 2 ) ( c 2 + d 2 ) = ( ac bd ) 2 + ( ad + bc ) 2 .

Answers

Proof. For all complex numbers α , β , | αβ | = | α | | β | , so

λ ( αβ ) = λ ( α ) λ ( β ) .

If α = a + bi [ i ) , β = c + di [ i ] , then αβ = ( ac bd ) + ( ad + bc ) i , thus

( a 2 + b 2 ) ( c 2 + d 2 ) = ( ac bd ) 2 + ( ad + bc ) 2 .

User profile picture
2022-07-19 00:00
Comments