Exercise 1.35

For α = a + [ ω ] we defined λ ( α ) = a 2 ab + b 2 . Show that α is a unit iff λ ( α ) = 1 . Deduce that 1 , 1 , ω , ω , ω 2 , and ω 2 are the only units in [ ω ] .

Answers

Proof. If α = a + [ ω ] , using 1 + ω + ω 2 = 0 and ω ¯ = ω 2 , we obtain

α α ¯ = ( a + ) ( a + b ω 2 ) = a 2 + b 2 + ab ( ω + ω 2 ) = a 2 + b 2 ab = λ ( α )

Consequently, λ is a multiplicative function.

If λ ( α ) = 1 , then α α ¯ = 1 , where α ¯ = a + b ω 2 = ( a b ) [ ω ] , so α is an unit.

Conversely, if α is an unit, there exists β [ ω ] such that αβ = 1 , then λ ( α ) λ ( β ) = 1 , where λ ( α ) , λ ( β ) are positive integers, so λ ( α ) = 1 .

λ ( α ) = 1 a 2 ab + b 2 = 1 ( 2 a b ) 2 + 3 b 2 = 4 3 b 2 4 , so b = 0 or b = ± 1 .

If b = 0 , then a = ± 1 , α = 1 or α = 1

If b = 1 , then ( 2 a 1 ) 2 = 1 , 2 a 1 = ± 1 : a = 0 or a = 1 , α = ω or α = 1 + ω = ω 2 .

If b = 1 , then ( 2 a + 1 ) 2 = 1 , 2 a + 1 = ± 1 : a = 0 or a = 1 , α = ω or α = 1 ω = ω 2 .

So

λ ( α ) = 1 α { 1 , ω , ω 2 , 1 , ω , ω 2 } .

The set of units of [ ω ] is the group of the roots of x 6 1 . □

User profile picture
2022-07-19 00:00
Comments