Homepage › Solution manuals › Kenneth Ireland › A Classical Introduction to Modern Number Theory › Exercise 1.5
Exercise 1.5
Find and for the pairs and given in Ex 1.3
Answers
Proof. From exercises 1.3, 1.4, we know that the sequences are given by
and for all ,
and for all
This gives the direct instructions in Python :
>>> a,b = 187, 221 >>> r0,r1,m0,m1,n0,n1 = a,b,1,0,0,1 >>> q = r0//r1; >>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1 >>> print(r0,r1,m0,m1,n0,n1) 221 187 0 1 1 0 >>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1 >>> print(r0,r1,m0,m1,n0,n1) 187 34 1 -1 0 1 >>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1 >>> print(r0,r1,m0,m1,n0,n1) 34 17 -1 6 1 -5 >>> q = r0//r1; r0,r1,m0,m1,n0,n1 = r1, r0 -q*r1,m1, m0 -q*m1, n1, n0 - q*n1 >>> print(r0,r1,m0,m1,n0,n1) 17 0 6 -13 -5 11
So
Similarly
We obtain the same results with the following Python script :
def bezout(a,b): """input : entiers a,b output : tuple (x,y,d), (x,y) solution de ax+by = d, d = pgcd(a,b) """ (r0,r1)=(a,b) (u0,v0) = (1,0) (u1,v1) = (0,1) while r1 != 0: q = r0 // r1 (r2,u2,v2) = (r0 - q*r1,u0 - q*u1,v0 - q*v1) (r0,r1) = (r1,r2) (u0,u1) = (u1,u2) (v0,v1) = (v1,v2) return (u0,v0,r0)
□
2022-07-19 00:00