Exercise 10.16

Show by explicit calculation that every cubic form in two variables over 2 has a non trivial zero.

Answers

Note : this assertion seems false (or I don’t understood the sentence).

Proof.

We can write a cubic form on P 1 ( 𝔽 2 ) under the form

f ( x 0 , x 1 ) = a x 0 3 + b x 0 2 x 1 + c x 0 x 1 2 + d x 1 3 , a , b , c , d 𝔽 2 .

Thus there are 15 such cubic forms.

This small Sage program computes the set of non trivial solutions for each of these forms

F2 = GF(2)
R.<x0,x1>= F2[]
l = [a*x0^3 + b * x0^2 * x1 + c * x0 * x1^2 + d * x1^3
      for a in F2 for b in F2 for c in F2 for d in F2
      if not [a,b,c,d] == [0,0,0,0]]
l

[ x 1 3 , x 0 x 1 2 , x 0 x 1 2 + x 1 3 , x 0 2 x 1 , x 0 2 x 1 + x 1 3 , x 0 2 x 1 + x 0 x 1 2 , x 0 2 x 1 + x 0 x 1 2 + x 1 3 , x 0 3 , x 0 3 + x 1 3 , x 0 3 + x 0 x 1 2 , x 0 3 + x 0 x 1 2 + x 1 3 , x 0 3 + x 0 2 x 1 , x 0 3 + x 0 2 x 1 + x 1 3 , x 0 3 + x 0 2 x 1 + x 0 x 1 2 , x 0 3 + x 0 2 x 1 + x 0 x 1 2 + x 1 3 ]

for f in l:
    S = []
    for x in F2:
        for y in F2:
            if [x,y] != [0,0] and f.subs(x0=x,x1=y) == 0:
                S.append([x,y])
    print f,  ’ : ’, S

x1^3   :  [[1, 0]]
x0*x1^2   :  [[0, 1], [1, 0]]
x0*x1^2 + x1^3   :  [[1, 0], [1, 1]]
x0^2*x1   :  [[0, 1], [1, 0]]
x0^2*x1 + x1^3   :  [[1, 0], [1, 1]]
x0^2*x1 + x0*x1^2   :  [[0, 1], [1, 0], [1, 1]]
x0^2*x1 + x0*x1^2 + x1^3   :  [[1, 0]]
x0^3   :  [[0, 1]]
x0^3 + x1^3   :  [[1, 1]]
x0^3 + x0*x1^2   :  [[0, 1], [1, 1]]
x0^3 + x0*x1^2 + x1^3   :  []
x0^3 + x0^2*x1   :  [[0, 1], [1, 1]]
x0^3 + x0^2*x1 + x1^3   :  []
x0^3 + x0^2*x1 + x0*x1^2   :  [[0, 1]]
x0^3 + x0^2*x1 + x0*x1^2 + x1^3   :  [[1, 1]]

This shows that two cubics forms have no non trivial solutions. We verify this for the form x 0 3 + x 0 x 1 2 + x 1 3 :

x 0 x 1 x 0 3 + x 0 x 1 2 + x 1 3 0 1 1 1 0 1 1 1 1

So the sentence is false.

With three variables x 0 , x 1 , x 2 , there are 1023 cubics forms. A similar program gives among them the form

f ( x 0 , x 1 , x 2 ) = x 0 3 + x 0 x 1 2 + x 1 3 + x 0 x 1 x 2 + x 0 x 2 2 + x 1 x 2 2 + x 2 2 ,

which has no non trivial zero:

x 0 x 1 x 2 f ( x 0 , x 1 , x 2 ) 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1

The Chevalley’s Theorem shows that with 4 (or more) variables x 0 , x 1 , x 2 , x 3 , every cubic form has non trivial solutions. □

User profile picture
2022-07-19 00:00
Comments