Exercise 11.11

Consider the curve y 2 = x 3 Dx over F p , where D 0 . Call this curve C 1 . Show that the substitution x = 1 2 ( u + v 2 ) and y = 1 2 v ( u + v 2 ) transforms C 1 into the curve C 2 given by u 2 v 4 = 4 D . Show that in any given finite field the number of finite points on C 1 is one more than the number of finite points on C 2 .

Answers

Proof. Let F be a finite field such that the characteristic of F is not 2 . Here

C 1 = { ( x , y ) F 2 y 2 = x 3 Dx } , C 2 = { ( u , v ) F 2 u 2 v 4 = 4 D } .

Consider the maps

φ { C 1 { ( 0 , 0 ) } C 2 ( x , y ) ( 2 x ( y x ) 2 , y x ) , ψ { C 2 C 1 { ( 0 , 0 ) } ( u , v ) ( 1 2 ( u + v 2 ) , 1 2 v ( u + v 2 ) ) .

The map φ is well defined: If ( x , y ) C 1 { ( 0 , 0 ) } , then y 2 = x 3 Dx , and x 0 , otherwise y 2 = x 3 Dx = 0 , and then ( x , y ) = ( 0 , 0 ) .

Write ( u , v ) = ( 2 x ( y x ) 2 , y x ) , then x = 1 2 ( u + v 2 ) and y = 1 2 v ( u + v 2 ) . The equality y 2 = x 3 Dx gives

1 2 v 2 ( u + v 2 ) = 1 4 ( u + v 2 ) 2 D , 4 D = ( u + v 2 ) 2 2 v 2 ( u + v 2 ) , 4 D = u 2 v 4 ,

so that ( u , v ) = ( 2 x ( y x ) , y x ) C 2 .

The map ψ is well defined: if ( u , v ) C 2 , then u 2 v 4 = 4 D . Then u + v 2 0 , otherwise 4 D = u 2 v 4 = ( u v 2 ) ( u + v 2 ) = 0 , where 4 D 0 ( D 0 , and the characteristic is not 2 by hypothesis).

Write ( x , y ) = ( 1 2 ( u + v 2 ) , 1 2 v ( u + v 2 ) ) . Then x = 1 2 ( u + v 2 ) 0 , and ( u , v ) = ( 2 x ( y x ) 2 , y x ) . The equality u 2 v 4 = 4 D gives

( 2 x ( y x ) 2 ) 2 ( y x ) 4 = 4 D , 4 x 2 4 y 2 x = 4 D , x 3 Dx = y 2 ,

so that ( x , y ) = ( 1 2 ( u + v 2 ) , 1 2 v ( u + v 2 ) ) C 1 , and ( x , y ) ( 0 , 0 ) .

Take any point ( x , y ) C 1 { ( 0 , 0 ) } , then x 0 . Write ( u , v ) = φ ( x , y ) = ( 2 x ( y x ) , y x ) . Then ( x , y ) = ( 1 2 ( u + v 2 ) , 1 2 v ( u + v 2 ) ) = ψ ( u , v ) = ( ψ φ ) ( x , y ) . Thus ψ φ = 1 C 1 { ( 0 , 0 ) } . Similarly, take any point ( u , v ) C 2 . Write ( x , y ) = ψ ( u , v ) = ( 1 2 ( u + v 2 ) , 1 2 v ( u + v 2 ) ) . Then ( u , v ) = ( 2 x ( y x ) 2 , y x ) = φ ( x , y ) = ( φ ψ ) ( u , v ) . Thus φ ψ = 1 C 2 .

This proves that φ and ψ are bijections.

Therefore | C 2 | = | C 1 { ( 0 , 0 ) } | = | C 1 | 1 , and | C 1 | = | C 2 | + 1 .

To conclude, in any given finite field whose characteristic is not 2 , the number of finite points on C 1 is one more than the number of finite points on C 2 . □

User profile picture
2022-07-19 00:00
Comments