Exercise 11.4

Calculate the zeta function of x 0 x 1 x 2 x 3 = 0 over 𝔽 p .

Answers

Proof. Here F = 𝔽 p , and F s = 𝔽 p s .

To calculate N s , we calculate the number of points at infinity (such that x 0 = 0 ), and the numbers of affine points of the curve H ¯ f ( 𝔽 p s ) associate to

f ( x 0 , x 1 , x 2 , x 3 ) = x 0 x 1 x 2 x 3 .

To estimate the number of points at infinity, we calculate first the cardinality of the set U = { ( α 0 , α 1 , α 2 , α 3 ) F s 4 α 0 α 1 α 2 α 3 = 0 , α 0 = 0 } .

Then α 1 takes an arbitrary value a F s . Write

U a = { ( α 0 , α 1 , α 2 , α 3 ) U α 1 = a } .

Then U a = { ( α 0 , α 1 , α 2 , α 3 ) F s 4 α 0 = 0 , α 1 = a , α 2 α 3 = 0 } , thus U a = A B , where

A = { ( α 0 , α 1 , α 2 , α 3 ) U a α 2 = 0 } , B = { ( α 0 , α 1 , α 2 , α 3 ) U a α 3 = 0 } .

Since α 0 , α 1 , α 2 are fixed in A , the map A F s defined by ( α 0 , α 1 , α 2 , α 3 ) α 3 is a bijection, therefore | A | = p s , and similarly | B | = p s . But A B = { ( 0 , 0 , 0 , 0 ) } , thus

| U a | = | A | + | B | | A B | = 2 p s 1 .

Since U is the disjoint union of the U a , thus

| U | = a F s | U a | = a F s ( 2 p s 1 ) = 2 p 2 s p s .

Therefore the number of projective points [ α 0 , α 1 , α 2 , α 3 ] P 3 ( F s ) at infinity (such that α 0 = 0 ) is

N = | U | 1 p s 1 = 2 p 2 s p s 1 p s 1 = 2 p s + 1 .

Now we calculate the number of points of the affine surface H f ( 𝔽 s ) associate to the equation y 1 = y 2 y 3 (where y i = x i x 0 ).

The maps

u { F s 2 H f ( F s ) ( β , γ ) ( βγ , β , γ ) v { H f ( F s ) F s 2 ( α , β , γ ) ( β , γ )

satisfy u v = id , v u = id , so u is a bijection. With more informal words, the arbitrary choice of β , γ F s gives the affine point ( α , β , γ ) , where α = βγ .

This gives | H f ( F s ) | = p 2 s .

Therefore

N s = | H ¯ f ( F s ) | = p 2 s + 2 p s + 1 .

We obtain in [ [ u ] ]

s = 1 N s u s s = s = 1 ( p 2 u ) s s + 2 s = 1 ( pu ) s s + s = 1 u s s = ln ( 1 p 2 u ) 2 ln ( 1 pu ) ln ( 1 u ) .

This gives

Z f ( u ) = ( 1 p 2 u ) 1 ( 1 pu ) 2 ( 1 u ) 1 .

Note: The result for N s is verified with the naive and very slow following code in Sage:

def N(p,s):
    Fs = GF(p^s)
    counter = 0
    for x in Fs:
        for y in Fs:
            for z in Fs:
                for t in Fs:
                    if x*y == z*t:
                        counter += 1
    return (counter - 1)//(p^s - 1)

p, s = 5, 3
print N(p,s), p^(2*s) + 2*p^s +1

15876 15876

There is a misprint in the “Selected Hints for the Exercises” in Ireland-Rosen p.371. □

User profile picture
2022-07-19 00:00
Comments