Exercise 2.18

Prove that ϕ ( n ) ϕ ( m ) = ϕ ( ( n , m ) ) ϕ ( [ n , m ] ) .

Answers

Proof. Let p 1 , , p r be the common prime factors of n and m .

n = p 1 α 1 p r α r q 1 λ 1 q s λ s , m = p 1 β 1 p r β r s 1 μ 1 s t μ t .

where α i , β i , λ j , μ k , 1 i r , 1 j s , 1 k t (the formula ϕ ( p α ) = p α p α 1 is not valid if α = 0 ). Then

n m = p 1 γ 1 p r γ r n m = p 1 δ 1 p r δ r q 1 λ 1 q s λ s s 1 μ 1 s t μ t ,

where γ i = min ( α i , β i ) , δ i = max ( α i , β i ) ( γ i 1 , δ i 1 ) , 1 i r . Then

ϕ ( n m ) = i = 1 r ( p i γ i p i γ i 1 ) ϕ ( n m ) = i = 1 r ( p i δ i p i δ i 1 ) i = 1 s ( q i λ i q i λ i 1 ) i = 1 t ( s i μ i s i μ i 1 )

As α i + β i = min ( α i , β i ) + max ( α i , β i ) = γ i + δ i , 1 i r , then

ϕ ( n ) ϕ ( m ) = i = 1 r ( p i α i p i α i 1 ) i = 1 s ( q i λ i q i λ i 1 ) i = 1 r ( p i β i p i β i 1 ) i = 1 t ( s i μ i s i μ i 1 ) = i = 1 r [ p i α i + β i ( 1 1 p i ) 2 ] i = 1 s ( q i λ i q i λ i 1 ) i = 1 t ( s i μ i s i μ i 1 ) = i = 1 r [ p i γ i + δ i ( 1 1 p i ) 2 ] i = 1 s ( q i λ i q i λ i 1 ) i = 1 t ( s i μ i s i μ i 1 ) = i = 1 r ( p i γ i p i γ i 1 ) i = 1 r ( p i δ i p i δ i 1 ) i = 1 s ( q i λ i q i λ i 1 ) i = 1 t ( s i μ i s i μ i 1 ) = ϕ ( n m ) ϕ ( n m ) .
User profile picture
2022-07-19 00:00
Comments