Exercise 2.19

Prove that ϕ ( nm ) ϕ ( ( n , m ) ) = ( n , m ) ϕ ( n ) ϕ ( m ) .

Answers

Proof. With the notations of Ex. 2.18,

ϕ ( nm ) = i = 1 r p i α i + β i ( 1 1 p i ) i = 1 s q i λ i ( 1 1 q i ) i = 1 t s i μ i ( 1 1 s i ) ϕ ( n m ) = i = 1 r p i γ i ( 1 1 p i )

so

( n m ) ϕ ( n ) ϕ ( m ) = i = 1 r p i γ i i = 1 r [ p i α i + β i ( 1 1 p i ) 2 ] i = 1 s q i λ i ( 1 1 q i ) i = 1 t s i μ i ( 1 1 s i ) = i = 1 r [ p i α i + β i + γ i ( 1 1 p i ) 2 ] i = 1 s q i λ i ( 1 1 q i ) i = 1 t s i μ i ( 1 1 s i ) = ϕ ( nm ) ϕ ( n m ) .

Conclusion:

( n m ) ϕ ( n ) ϕ ( m ) = ϕ ( nm ) ϕ ( n m ) .

User profile picture
2022-07-19 00:00
Comments