Exercise 3.13

Use Ex. 3.12 to give another proof of Fermat’s theorem, a p 1 1 ( mod p ) if p does not divide a .

Answers

Proof. If we make the induction hypothesis

P ( k ) ( a 1 , a 2 , , a k ) k , ( a 1 + a 2 + + a k ) p a 1 p + a 2 p + + a k p ( mod p )

(which is true for k = 1 , k = 2 ) then, from induction hypothesis and the case k = 2 already proved in Ex 3.12,

( a 1 + a 2 + + a k + a k + 1 ) p = ( ( a 1 + a 2 + + a k ) + a k + 1 ) p ( a 1 + a 2 + + a k ) p + a k + 1 p ( mod p ) a 1 p + a 2 p + + a k p + a k + 1 p ( mod p )

so P ( k ) P ( k + 1 ) . We can conclude

k , ( a 1 , a 2 , , a k ) k , ( a 1 + a 2 + + a k ) p a 1 p + a 2 p + + a k p ( mod p ) .

If we apply this result to the particular case a 1 = a 2 = = a k = 1 , we obtain

k , k p k ( mod p ) .

Moreover ( k ) p k p k ( mod p ) (even if p = 2 ), and 0 p = 0 , so

k , k p k ( mod p ) .

If p a , a , then p a = 1 , and p a p a = a ( a p 1 1 ) , so p a p 1 1 , a p 1 1 ( mod p ) : this is another proof of Fermat’s theorem. □

User profile picture
2022-07-19 00:00
Comments