Homepage › Solution manuals › Kenneth Ireland › A Classical Introduction to Modern Number Theory › Exercise 3.16
Use the proof of the Chinese Remainder Theorem to solve the system x ≡ 1 ( mod 7 ) , x ≡ 4 ( mod 9 ) , x ≡ 3 ( mod 5 ) .
Proof. Let m 1 = 7 , m 2 = 9 , m 3 = 5 , m = m 1 m 2 m 3 = 315 , n 1 = m ∕ m 1 = m 2 m 3 = 45 , n 2 = m 1 m 3 = 35 , n 3 = m 1 m 2 = 63 .
If r 1 = 13 , s 1 = − 2 , then r 1 m 1 + s 1 n 1 = 13 m 1 − 2 m 2 m 3 = 13 × 7 − 2 × 45 = 1 ,
so e 1 = s 1 n 1 = − 2 × 45 = − 90 verifies
If r 2 = 4 , s 2 = − 1 , then r 2 m 2 + s 2 n 2 = 4 × 9 − 1 × 35 = 1 ,
so e 2 = s 2 n 2 = − 35 verifies
If r 3 = − 25 , s 3 = 2 , then r 3 m 3 + s 3 n 3 = − 25 × 5 + 2 × 63 = 1 ,
so e 3 = s 3 n 3 = 2 × 63 = 126 verifies
Let x 0 = e 1 + 4 e 2 + 3 e 3 = 148 : then
If x ∈ ℤ is any solution of the system, then 7 ∣ x − x 0 , 9 ∣ x − x 0 , 5 ∣ x − x 0 , with 7 ∧ 9 = 7 ∧ 5 = 9 ∧ 5 = 1 , so m = 315 ∣ x − x 0 :
and all these integers are solutions of the system. □