Exercise 3.16

Use the proof of the Chinese Remainder Theorem to solve the system x 1 ( mod 7 ) , x 4 ( mod 9 ) , x 3 ( mod 5 ) .

Answers

Proof. Let m 1 = 7 , m 2 = 9 , m 3 = 5 , m = m 1 m 2 m 3 = 315 , n 1 = m m 1 = m 2 m 3 = 45 , n 2 = m 1 m 3 = 35 , n 3 = m 1 m 2 = 63 .

If r 1 = 13 , s 1 = 2 , then r 1 m 1 + s 1 n 1 = 13 m 1 2 m 2 m 3 = 13 × 7 2 × 45 = 1 ,

so e 1 = s 1 n 1 = 2 × 45 = 90 verifies

e 1 = 90 , e 1 1 ( mod 7 ) , e 1 0 ( mod 9 ) , e 1 0 ( mod 5 ) .

If r 2 = 4 , s 2 = 1 , then r 2 m 2 + s 2 n 2 = 4 × 9 1 × 35 = 1 ,

so e 2 = s 2 n 2 = 35 verifies

e 2 = 35 , e 2 0 ( mod 7 ) , e 2 1 ( mod 9 ) , e 2 0 ( mod 5 ) .

If r 3 = 25 , s 3 = 2 , then r 3 m 3 + s 3 n 3 = 25 × 5 + 2 × 63 = 1 ,

so e 3 = s 3 n 3 = 2 × 63 = 126 verifies

e 3 = 126 , e 3 0 ( mod 7 ) , e 3 0 ( mod 9 ) , e 3 1 ( mod 5 ) .

Let x 0 = e 1 + 4 e 2 + 3 e 3 = 148 : then

x 0 = 148 , x 0 1 ( mod 7 ) , x 0 4 ( mod 9 ) , x 0 3 ( mod 5 ) .

If x is any solution of the system, then 7 x x 0 , 9 x x 0 , 5 x x 0 , with 7 9 = 7 5 = 9 5 = 1 , so m = 315 x x 0 :

x = 148 + k 315 , k ,

and all these integers are solutions of the system. □

User profile picture
2022-07-19 00:00
Comments