Exercise 3.20

Show that x 2 1 ( mod 2 b ) has one solution if b = 1 , two solutions if b = 2 , and four solutions if b 3 .

Answers

Proof. Consider the equation x 2 1 ( mod 2 b ) .

If b = 1 , x 2 1 ( mod 2 ) 2 ( x 1 ) ( x + 1 ) x 1 ( mod 2 ) : we obtain one solution.

If b = 2 , as 0 2 2 2 0 ( mod 4 ) , x 2 1 ( mod 4 ) x ± 1 ( mod 4 ) : we obtain two solutions.

Suppose that b 3 . The equation has 4 solutions 1 , 1 , 1 + 2 b 1 , 1 + 2 b 1 .

Indeed, ( ± 1 ) 2 1 ( mod 2 b ) , and

( 1 + 2 b 1 ) 2 = 1 + 2 . 2 b 1 + 2 2 b 2 = 1 + 2 b ( 1 + 2 b 2 ) 1 ( mod 2 b ) ,

and similarly ( 1 + 2 b 1 ) 2 1 ( mod 2 b ) .

These solutions are incongruent modulo 2 b :

1 1 ( mod 2 b ) and 1 + 2 b 1 1 + 2 b 1 (if not, 2 b 2 , so b 1 ).

If 1 + 2 b 1 1 ( mod 2 b ) , then 2 b 2 + 2 b 1 = 2 ( 1 + 2 b 2 ) , thus 2 2 b 1 ( 1 + 2 b 2 ) , this is impossible because 1 + 2 b 2 is odd ( b 3 ). Therefore 1 + 2 b 1 1 ( mod 2 b ) . Moreover 1 + 2 b 1 1 ( mod 2 b ) implies 2 b 2 b 1 , so 2 1 : this is a contradiction, so 1 + 2 b 1 1 ( mod 2 b ) , and similarly 1 + 2 b 1 1 ( mod 2 b ) . There exist at least 4 solutions.

We show that these are the only solutions :

x , x 2 1 ( mod 2 b ) x ± 1 ( mod 2 b 1 ) .

Indeed, if x 2 1 ( mod 2 b ) , 2 b ( x 1 ) ( x + 1 ) , where d = ( x 1 ) ( x + 1 ) = 2 .

As in Ex.3.19, if d = 1 , then 2 b x 1 or 2 b x + 1 , a fortiori x ± 1 ( mod 2 b 1 ) .

If d = 2 , then x is odd, and 2 b 4 x 1 2 x + 1 2 , so 2 b 2 x 1 2 x + 1 2 , with x 1 2 x + 1 2 = 1 , so 2 b 2 x 1 2 or 2 b 2 x + 1 2 , that is 2 b 1 x 1 or 2 b 1 x + 1 , thus x ± 1 ( mod 2 b 1 ) .

(Alternatively, we can prove this implication by induction.)

Hence every solution of x 2 1 ( mod 2 b ) , b 3 is such that x = ± 1 + k 2 b 1 , k : there exist only four such values in the interval [ 0 , 2 b [ , namely 1 , 1 + 2 b 1 , 1 + 2 b 1 , 1 + 2 b .

Conclusion: if b 3 , the roots of x 2 1 in 2 b are 1 ¯ , 1 ¯ , 1 ¯ + 2 ¯ b 1 , 1 ¯ + 2 ¯ b 1 . □

User profile picture
2022-07-19 00:00
Comments