Exercise 4.11

Prove that 1 k + 2 k + . . . + ( p 1 ) k 0 ( mod p ) if p 1 k , and 1 ( mod p ) if p 1 k .

Answers

Proof. Let S k = 1 k + 2 k + + ( p 1 ) k .

Let g a primitive root modulo p : g ¯ a generator of 𝔽 p .

As ( 1 ¯ , g ¯ , g ¯ 2 , , g ¯ p 2 ) is a permutation of ( 1 ¯ , 2 ¯ , , p 1 ¯ ) ,

S k ¯ = 1 ¯ k + 2 ¯ k + + p 1 ¯ k = i = 0 p 2 g ¯ ki = { p 1 ¯ = 1 ¯ if p 1 k g ¯ ( p 1 ) k 1 g ¯ k 1 = 0 ¯ if p 1 k

since p 1 k g ¯ k = 1 ¯ .

Conclusion :

1 k + 2 k + + ( p 1 ) k 0 ( mod p ) if p 1 k , 1 k + 2 k + + ( p 1 ) k 1 ( mod p ) if p 1 k .
User profile picture
2022-07-19 00:00
Comments