Exercise 4.16

Calculate the solutions to x 3 1 ( mod 19 ) and x 4 1 ( mod 17 ) .

Answers

Proof. Here we note a the class of x in pℤ .

Let a 𝔽 19 . Then

a 3 1 = 0 a 1 = 0  or  a 2 + a + 1 = 0 .

a 2 + a + 1 = 0 ( a + 10 ) 99 = 0 ( a + 10 ) 2 4 = 0 ( a + 8 ) ( a + 12 ) = 0

So, for all x ,

x 3 1 ( mod 19 ) x 1 , 7 , 11 ( mod 19 ) .

Let a 𝔽 17 .

a 4 = 1 a 2 = 1 or a 2 = 1 = 4 2 a = ± 1 or a = ± 4

So, for all x ,

x 4 1 ( mod 17 ) x 1 , 1 , 4 , 4 ( mod 17 ) .

Alternatively, we can take primitives roots modulo 19 and 17.

2 is a primitive root modulo 19 , Let a = 2 k 𝔽 19 .

a 3 = 1 2 3 k = 1 18 3 k 6 k a = 1 , 2 6 = 7 , 2 12 = 11

3 is a primitive root modulo 17. Let a = 3 k 𝔽 17 .

a 4 = 1 3 4 k = 1 16 4 k 4 k a = 1 , 3 4 = 4 , 3 8 = 1 , 3 12 = 4
User profile picture
2022-07-19 00:00
Comments