Exercise 4.17

Use the fact that 2 is a primitive root modulo 29 to find the seven solutions to x 7 1 ( mod 29 ) .

Answers

Proof. Let x , then x 2 k ( mod 29 ) , k .

x 7 1 ( mod 29 ) 2 7 k 1 ( mod 29 ) 28 7 k 4 k

So the group cyclic S of the roots of x 7 1 in 𝔽 29 are

S = { 1 , 2 4 , 2 8 , 2 12 , 2 16 , 2 20 , 2 24 } ,

S = { 1 , 16 , 24 , 7 , 25 , 23 , 20 } .

User profile picture
2022-07-19 00:00
Comments