Exercise 4.22

If a has order 3 modulo p , show that 1 + a has order 6 .

Answers

Proof. If a has order 3 modulo p , then 0 a 3 1 = ( a 1 ) ( a 2 + a + 1 ) ( mod p ) , with a 1 ( mod p ) , thus a 2 + a + 1 0 ( mod p ) . Thus

( 1 + a ) 3 1 + 3 a + 3 a 2 + a 3 1 + 3 a + 3 ( 1 a ) + 1 1 ( mod p )

So ( 1 + a ) 6 1 ( mod p ) .

( 1 + a ) 2 1 + 2 a + a 2 = 1 + 2 a + ( 1 a ) a 1 ( mod p ) .

So ( 1 + a ) 6 1 , ( 1 + a ) 2 1 , ( 1 + a ) 3 1 ( mod p ) , therefore the order of 1 + a divides 6 , but doesn’t divides 2 or 3 , thus 1 + a has order 6 modulo p . □

User profile picture
2022-07-19 00:00
Comments