Exercise 4.2

Compute all primitive roots for p = 11 , 13 , 17 , and 19 .

Answers

Proof. p = 11 . Then p 1 = 10 = 2 × 5 .

Since 2 2 = 4 1 ( mod 11 ) , and 2 5 = 32 1 1 ( mod 11 ) , 2 is a primitive element modulo 11 .

The other primitive elements modulo 11 are congruent to the powers 2 i , i 10 = 1 , 1 i < 10 , namely 2 , 2 3 , 2 7 , 2 9 .

2 7 7 ( mod 11 ) , 2 9 6 ( mod 11 ) , so

{ 2 ¯ , 8 ¯ , 7 ¯ , 6 ¯ } is the set of the generators of U ( 11 ) .

Similarly :

p = 13 : { 2 , 6 , 11 , 7 } is the set of the generators of U ( 13 ) .

p = 17 : { 3 , 10 , 5 , 11 , 14 , 7 , 12 , 6 } is the set of the generators of U ( 17 ) .

p = 19 : { 2 , 13 , 14 , 15 , 3 , 10 } is the set of the generators of U ( 19 ) .

I obtain these results with the direct orders in S.A.G.E. :

p = 19; Fp = GF(p); a = Fp.multiplicative_generator()
print([a^k for k in range(1,p) if gcd(k,p-1) == 1])

User profile picture
2022-07-19 00:00
Comments