Exercise 5.1

Use Gauss’ lemma to determine ( 5 7 ) , ( 3 11 ) , ( 6 13 ) , ( 1 p ) .

Answers

Proof. a = 5 , p = 7 .

The array of values of the least residues modulo p = 7 , for 1 k ( p 1 ) 2 .

k 1 2 3 5 k mod 7 2 3 1

So the number of negative least residues is μ = 1 , and ( 5 7 ) = ( 1 ) μ = 1 .

a = 3 , p = 11 .

k 1 2 3 4 5 3 k mod 11 3 5 2 1 4

So μ = 2 , ( 3 11 ) = ( 1 ) μ = 1 .

a = 6 , p = 13 .

k 1 2 3 4 5 6 6 k mod 13 6 1 5 2 4 3

So μ = 3 , ( 6 13 ) = ( 1 ) μ = 1 .

If a = 1 , and p is an odd prime, the values of the least residues of k modulo p for k = 1 , 2 , , ( p 1 ) 2 are k , all negative. So the number of negative least residues is μ = ( p 1 ) 2 , and ( 1 p ) = ( 1 ) ( p 1 ) 2 . □

User profile picture
2022-07-19 00:00
Comments