Exercise 5.9

Prove that 1 2 3 2 ( p 2 ) 2 ( 1 ) ( p + 1 ) 2 ( mod p ) using Wilson’s theorem.

Answers

Proof. Here p is an odd prime.

From Wilson’s theorem, as k ( p k ) k 2 ( mod p ) for k = 1 , 2 , , p 1 ,

1 ( p 1 ) ! [ 1 × 2 × × k × × ( p 1 2 ) ] × [ ( p + 1 2 ) × × ( p k ) × ( p 2 ) × ( p 1 ) ] k = 1 ( p 1 ) 2 k ( p k ) ( 1 ) ( p 1 ) 2 k = 1 ( p 1 ) 2 k 2 ( 1 ) ( p 1 ) 2 [ ( p 1 2 ) ! ] 2 ( mod p )

Therefore

[ ( p 1 2 ) ! ] 2 ( 1 ) ( p + 1 ) 2 ( mod p ) .

Moreover, from Wilson’ theorem and Fermat’s little theorem,

1 2 2 2 3 2 ( p 1 ) 2 = [ ( p 1 ) ! ] 2 1 ( mod p ) , 2 2 4 2 ( p 1 ) 2 = ( 2 p 1 ) 2 [ ( p 1 2 ) ! ] 2 [ ( p 1 2 ) ! ] 2 ( mod p ) .

Thus

1 2 3 2 ( p 2 ) 2 [ ( p 1 2 ) ! ] 2 1 ( mod p ) ,

which gives

1 2 3 2 ( p 2 ) 2 ( 1 ) ( p + 1 ) 2 ( mod p ) .

User profile picture
2022-07-19 00:00
Comments