Exercise 6.8

Let ω = e 2 πi 3 , ω satisfies x 3 1 = 0 . Show that ( 2 ω + 1 ) 2 = 3 , and use this to determine ( 3 p ) by the method of section 2 .

Answers

Proof. As ω 2 + ω + 1 = 0 , ( 2 ω + 1 ) 2 = 4 ω 2 + 4 ω + 1 = 4 + 1 = 3 . Let α = 2 ω + 1 , so that α 2 = 3

( 3 p ) ( 3 ) ( p 1 ) 2 ( mod p ) α p 1 ( mod p )

α p = ( 3 p ) α .

From Prop. 6.1.6,

α p = ( 2 ω + 1 ) p 2 p ω p + 1 ( mod p ) 2 ω p + 1 ( mod p )
If p 0 ( mod 3 ) , ( 3 p ) = 0 .
If p 1 ( mod 3 ) , ω p = ω , so α p α ( mod p ) .

( 3 p ) α α ( mod p ) , thus ( 3 p ) α 2 α 2 ( mod p ) , ( 3 p ) 3 3 ( mod p ) . As p 3 = 1 , ( 3 p ) 1 ( mod p ) . Since ( 3 p ) = ± 1 , ( 3 p ) = 1 .

If p 1 ( mod 3 ) , ω p = ω 1 = ω 2 , and α p 2 ω p + 1 ( mod p ) 2 ω 2 + 1 = 2 ( 1 ω ) + 1 = 2 ω 1 = α ( mod p ) .

( 3 p ) α α ( mod p ) , thus ( 3 p ) α 2 α 2 ( mod p ) , ( 3 p ) 3 3 ( mod p ) . As p 3 = 1 , ( 3 p ) 1 ( mod p ) . Since ( 3 p ) = ± 1 , ( 3 p ) = 1 .

Conclusion :

p 0 [ 3 ] ( 3 p ) = 0 , p 1 [ 3 ] ( 3 p ) = 1 , p 1 [ 3 ] ( 3 p ) = 1 .

In other words, ( 3 p ) = ( p 3 ) .

Note : α = 2 ω + 1 = ω ω 2 = g is the quadratic Gauss sum for p = 3 . □

User profile picture
2022-07-19 00:00
Comments