Exercise 7.16

Calculate the monic irreducible polynomials of degree 4 in 2 [ x ] .

Answers

Proof. Write F d the product of irreducible monic polynomials in 𝔽 2 [ x ] .

Theorem 2 gives

x 16 x = x 2 4 x = d 4 F d ( x ) = F 1 ( x ) F 2 ( x ) F 4 ( x )

and

x 4 x = x 2 2 x = d 2 F d ( x ) = F 1 ( x ) F 2 ( x )

so F 4 ( x ) = x 16 x x 4 x = x 15 1 x 3 1 = x 12 + x 9 + x 6 + x 3 + 1 ,

F 4 ( x ) = ( x 4 + x 3 + x 2 + x + 1 ) ( x 4 + x + 1 ) ( x 4 + x 3 + 1 ) .

Among the 16 monic polynomials of degree 4 in 𝔽 2 [ x ] , 3 are irreducible :

P 1 ( x ) = x 4 + x 3 + x 2 + x + 1 , P 2 ( x ) = x 4 + x + 1 , P 3 ( x ) = x 4 + x 3 + 1 .

With sage :

sage: A = PolynomialRing(GF(2),’x’)
sage: x = A.gen()
sage: f = (x^16-x)/(x^4-x)
sage: factor(f)
(x^4 + x + 1) * (x^4 + x^3 + 1) * (x^4 + x^3 + x^2 + x + 1)

User profile picture
2022-07-19 00:00
Comments