Homepage › Solution manuals › Kenneth Ireland › A Classical Introduction to Modern Number Theory › Exercise 7.20
Exercise 7.20
With the notation of Exercise 19 let be the number of monic divisors of and , where the sum is over the monic divisors of . Verify the following identities :
- (a)
- .
- (b)
- .
Answers
Proof. (a) With the notation of 7.19, for , is absolutely convergent and
Then
indeed, the application
is a bijection.
So
(b) Similarly,
□