Exercise 8.19

Find a formula for the number of solutions to x 1 2 + x 2 2 + + x r 2 = 0 in 𝔽 p .

Answers

Proof. Let χ be the Legendre character. Then

N ( x 1 2 + x 2 2 + + x r 2 = 0 ) = a 1 + a 2 + + a r = 0 N ( x 1 2 = a 1 ) N ( x 2 2 = a 2 ) N ( x r 2 = a r ) = a 1 + a 2 + + a r = 0 ( 1 + χ ( a 1 ) ) ( 1 + χ ( a 2 ) ) ( 1 + χ ( a r ) ) = p r 1 + J 0 ( χ , χ , , χ )

(We used Proposition 8.5.1). For all k , χ 2 k = 𝜀 , χ 2 k + 1 = χ .

If r is odd, χ r 𝜀 , so J 0 ( χ , χ , , χ ) = 0 (Proposition 8.5.1).

N ( x 1 2 + x 2 2 + + x r 2 = 0 ) = p r 1 .

If r is even, χ r = 𝜀 , so J 0 ( χ , χ , , χ ) = χ ( 1 ) ( p 1 ) J ( χ , χ , , χ ) , where there are r 1 components in the Jacobi sum ( Proposition 8.5.1).

By Theorem 3, J ( χ , χ , , χ ) g ( χ r 1 ) = g ( χ ) r 1 , and g ( χ r 1 ) = g ( χ ) , so

J ( χ , χ , , χ ) = g ( χ ) r 2 .

g ( χ ) 2 = χ ( 1 ) p , therefore g ( χ ) r 2 = χ ( 1 ) r 2 1 p r 2 1 = ( 1 ) ( ( p 1 ) 2 ) ( r 2 1 ) p ( r 2 1 ) . So

N ( x 1 2 + x 2 2 + + x r 2 = 0 ) = p r 1 + ( 1 ) p 1 2 r 2 ( p 1 ) p r 2 1 .

(Verified in C++ with small values of p and r .)

Conclusion :

{ N ( x 1 2 + x 2 2 + + x r 2 = 0 ) = p r 1 if r is odd , = p r 1 + ( 1 ) p 1 2 r 2 ( p 1 ) p r 2 1 if r is even .

User profile picture
2022-07-19 00:00
Comments