Exercise 8.4

Show, if k 𝔽 p , k 0 , that t χ ( t ( k t ) ) = χ ( k 2 2 2 ) J ( χ , ρ ) .

Answers

Proof. We know from Ex. 8.3 that J ( χ , ρ ) = t χ ( 1 t 2 ) , so

J ( χ , ρ ) = t 𝔽 p χ ( 1 t ) χ ( 1 + t ) = u 𝔽 p χ ( u ) χ ( 2 u ) ( u = 1 t ) = χ ( 2 2 ) u 𝔽 p χ ( u 2 ) χ ( 1 u 2 ) = χ ( 2 2 ) v 𝔽 p χ ( v ) χ ( 1 v ) ( u = 2 v ) = χ ( 2 2 ) χ ( k 2 ) v 𝔽 p χ ( kv ) χ ( k kv ) = χ ( 2 2 k 2 ) t 𝔽 p χ ( t ) χ ( k t ) ( t = kv ) .

Conclusion: if k 𝔽 , and χ is a non trivial character, ρ the character of order 2,

t 𝔽 p χ ( t ( k t ) ) = χ ( k 2 2 2 ) J ( χ , ρ ) .

User profile picture
2022-07-19 00:00
Comments