Exercise 8.5

If χ 2 𝜀 , show that g ( χ ) 2 = χ ( 2 ) 2 J ( χ , ρ ) g ( χ 2 ) . [Hint: Write out g ( χ ) 2 explicitly and use Exercise 4.]

Answers

Proof. Let ζ = e 2 p . Using the result of Ex. 8.4, we obtain

g ( χ ) 2 = ( t χ ( t ) ζ t ) ( s χ ( s ) ζ s ) = s , t χ ( t ) χ ( s ) ζ t + s = k ( s + t = k χ ( t ) χ ( s ) ) ζ k = k ( t χ ( t ( k t ) ) ζ k = χ ( 1 ) t χ ( t 2 ) + k 0 χ ( k 2 2 2 ) J ( χ , ρ ) ζ k = χ ( 1 ) t χ 2 ( t ) + χ ( 2 ) 2 J ( χ , ρ ) k 0 χ 2 ( k ) ζ k

If χ 2 𝜀 , t χ 2 ( t ) = 0 , so

g ( χ ) 2 = χ ( 2 ) 2 J ( χ , ρ ) g ( χ 2 ) .

User profile picture
2022-07-19 00:00
Comments