Exercise 9.27

Let π = a + bi be a primary irreducible in [ i ] , b 0 . Show

(a)
a ( 1 ) ( p 1 ) 4 ( mod 4 ) , p = N ( π ) .
(b)
b ( 1 ) ( p 1 ) 4 1 ( mod 4 ) .

(Wrong sentence for (b) in the edition 1990.)

Answers

Proof. Let π = a + bi be a primary prime in [ i ] , b 0 , such that p = N ( π ) . Then

p = π π ¯ = a 2 + b 2 1 [ 4 ] .

By Lemma 6, Section 7, a is odd, b even, and

( a 1 [ 4 ] , b 0 [ 4 ] ) or ( a 3 [ 4 ] , b 2 [ 4 ] ) .

(a)
Case 1: a 1 [ 4 ] , b 0 [ 4 ] . Then a = 4 A + 1 , b = 4 B , A , B , so ( a 2 + b 2 1 ) 4 = 4 A 2 + 4 B 2 + 2 A is even :

( 1 ) ( p 1 ) 4 = ( 1 ) ( a 2 + b 2 1 ) 4 = 1 , and a 1 [ 4 ] , thus a ( 1 ) ( p 1 ) 4 [ 4 ] .

Case 2: a 3 [ 4 ] , b 2 ( mod 4 ) .

a = 4 A + 3 , b = 4 B + 2 , a 2 + b 2 1 = 16 A 2 + 24 A + 9 + 16 B 2 + 16 B + 4 1 4 [ 8 ] , so ( a 2 + b 2 1 ) 4 1 [ 2 ] , ( 1 ) ( p 1 ) 4 = ( 1 ) ( a 2 + b 2 1 ) 4 = 1 , and a 1 [ 4 ] , thus a ( 1 ) ( p 1 ) 4 [ 4 ] .

In both cases,

a ( 1 ) ( p 1 ) 4 [ 4 ] .

(b)
In every case, b a 1 [ 4 ] , thus b ( 1 ) ( p 1 ) 4 1 [ 4 ] .

In other words, for all primary primes π = a + bi such that N ( π ) = p ,

p 1 [ 8 ] π 1 [ 4 ] , p 5 [ 8 ] π 3 + 2 i [ 4 ] .
User profile picture
2022-07-19 00:00
Comments