Exercise 9.30

Use the preceding two exercises to show χ π ( π ¯ ) = χ π ( 2 ) ( 1 ) ( a 2 1 ) 8 .

Answers

Proof. By Exercises 9.28, 9.29, and χ π ( 1 ) = ( 1 ) ( a 1 ) 2 (Prop. 9.8.3(d)),

χ π ( π ¯ ) = χ π ( 2 ) χ π ( a ) = χ π ( 2 ) χ π ( a ( 1 ) ( p 1 ) 4 ) ( χ π ( 1 ) ) ( p 1 ) 4 = χ π ( 2 ) ( 1 ) ( a 2 1 ) 8 ( ( 1 ) ( a 1 ) 2 ) ( p 1 ) 4 = χ π ( 2 ) ( 1 ) ( a 2 1 ) 8 ( ( 1 ) ( a 1 ) 2 ) ( p + 3 ) 4 = χ π ( 2 ) ( 1 ) ( a 2 1 ) 8 ( 1 ) ( ( a 1 ) 2 ) ( ( p + 3 ) 4 ) .

If a 1 ( mod 4 ) , then ( 1 ) ( a 1 ) 2 = 1 .

If a 3 ( mod 4 ) , then b 2 [ 4 ] :

a = 4 A + 3 , b = 4 B + 2 , p + 3 = a 2 + b 2 + 3 = ( 4 A + 3 ) 2 + ( 4 B + 2 ) 2 + 3 0 [ 8 ] ,

so ( p + 3 ) 4 0 [ 2 ] .

In both cases ( 1 ) ( ( a 1 ) 2 ) ( ( p + 3 ) 4 ) = 1 , and so

χ π ( π ¯ ) = χ π ( 2 ) ( 1 ) ( a 2 1 ) 8 .

User profile picture
2022-07-19 00:00
Comments