Exercise 9.33

Let q be a positive prime, q 3 ( mod 4 ) . Show χ q ( 1 + i ) = i ( q + 1 ) 4 . [Hint : ( 1 + i ) q 1 i ( mod q ) .]

Answers

The sentence is false and must be replaced by

χ q ( 1 + i ) = ( i ) ( q + 1 ) 4 = i ( q + 1 ) 4 .

We verify this on the example q = 11 :

χ q ( 1 + i ) ( 1 + i ) ( q 2 1 ) 4 ( 1 + i ) 30 2 15 i 32 i i ( mod 11 ) ,

so χ 11 ( 1 + i ) = i , and i ( q 1 ) 4 = i 3 = i (but i ( q + 1 ) 4 = i ).

Proof.

Write q = 4 k + 3 , k .

As ( 1 + i ) 2 = 2 i , ( 1 + i ) q 1 = ( 2 i ) ( q 1 ) 2 .

2 ( q 1 ) 2 ( 2 q ) [ q ] and ( 2 q ) = ( 1 ) ( q 2 1 ) 8 = ( 1 ) 2 k 2 + 3 k + 1 = ( 1 ) k + 1

i ( q 1 ) 2 = i 2 k + 1 = ( 1 ) k i .

So

( 1 + i ) q 1 i [ q ] .

N ( q ) = q 2 , so χ q ( 1 + i ) ( 1 + i ) ( q 2 1 ) 4 = [ ( 1 + i ) q 1 ] ( q + 1 ) 4 ( i ) ( q + 1 ) 4 [ q ] :

χ q ( 1 + i ) = ( i ) ( q + 1 ) 4 = i ( q 1 ) 4 .

User profile picture
2022-07-19 00:00
Comments