Exercise 9.34

Let π = a + bi be a primary irreducible, ( a , b ) = 1 . Show

(a)
if π 1 ( mod 4 ) , then χ π ( a ) = i ( a 1 ) 2 .
(b)
if π 3 + 2 i ( mod 4 ) , then χ π ( a ) = i ( a 1 ) 2 .

Answers

Proof. Let π = a + bi be a primary irreducible, with a b = 1 , so b 0 . We can apply the result of Exercise 9.29:

χ π ( a ( 1 ) ( p 1 ) 4 ) = ( 1 ) ( a 2 1 ) 8 .

(a)
Suppose that π 1 [ 4 ] .

Then a 1 [ 4 ] , b 0 [ 4 ] , a = 4 A + 1 , b = 4 B , A , B .

As χ π ( 1 ) = ( 1 ) ( a 1 ) 2 ,

χ π ( a ) = ( 1 ) a 1 2 p 1 4 ( 1 ) a 2 1 8 ,

where

p = = a 2 + b 2 , ( 1 ) ( p 1 ) 4 = ( 1 ) a 2 1 4 + b 2 4 = ( 1 ) 4 A 2 + 2 A + 4 B 2 = 1 ,

thus ( 1 ) a 1 2 p 1 4 = 1 .

χ π ( a ) = ( 1 ) ( a 2 1 ) 8 = ( 1 ) 2 A 2 + A = ( 1 ) A = ( 1 ) ( a 1 ) 4 = i ( a 1 ) 2 .

Conclusion: if π 1 [ 4 ] , χ π ( a ) = i ( a 1 ) 2 .

(b)
Suppose that π 3 + 2 i [ 4 ] .

Then a 3 [ 4 ] , b 2 [ 4 ] , a = 4 A + 3 , b = 4 B + 2 , A , B . As in (a),

χ π ( a ) = ( 1 ) a 1 2 p 1 4 ( 1 ) a 2 1 8 ,

where a 2 + b 2 1 = 16 A 2 + 24 A + 16 B 2 + 16 B + 12 4 [ 8 ] , so a 2 + b 2 1 4 1 [ 2 ] , thus ( 1 ) ( p 1 ) 4 = ( 1 ) ( a 2 + b 2 1 ) 4 = 1 .

( 1 ) a 1 2 p 1 4 = ( 1 ) a 1 2 = ( 1 ) 2 A + 1 = 1 ,

a 2 1 8 = 2 A 2 + 3 A + 1 , ( 1 ) ( a 2 1 ) 8 = ( 1 ) 3 A + 1 = ( 1 ) A + 1 = ( 1 ) ( a + 1 ) 4 ,

χ π ( a ) = ( 1 ) ( a + 1 ) 4 = i ( a + 1 ) 2 .

Moreover

a + 1 2 a 1 2 [ 4 ] a + 1 a 1 [ 8 ] 2 a 2 [ 8 ] a 3 [ 4 ] ,

thus i ( a + 1 ) 2 = i ( a 1 ) 2 .

Conclusion : if π 3 + 2 i [ 4 ] , χ π ( a ) = i ( a 1 ) 2 .

User profile picture
2022-07-19 00:00
Comments