Exercise 9.35

If π = a + bi is as in Exercise 9.34 show χ π ( a ) χ π ( 1 + i ) = i ( 3 ( a + b 1 ) ) 4 . [Hint: a ( 1 + i ) = a + b + i ( a + bi ) . Generalize Exercises 32 and 33 to any integer 1 ( mod 4 ) and use Proposition 9.9.8. Note a + b 1 ( mod 4 ) .]

Answers

Proof. We give a generalization of Exercises 9.32 and 9.33 : if n 1 [ 4 ] , n 1 , then χ n ( 1 + i ) = i ( n 1 ) 4 .

By Exercises 9.32 and 9.33, we know that if p 1 [ 4 ] is a rational prime, then

χ p ( 1 + i ) = i ( p 1 ) 4 ,

and if q 3 [ 4 ] , in other words q 1 [ 4 ] , where q is a rational prime, then

χ q ( 1 + i ) = χ q ( 1 + i ) = i ( q 1 ) 4 .

Let n , n 1 [ 4 ] , n 1 .

If n > 0 , n = q 1 q 2 q k p 1 p 2 p l , where q i 1 [ 4 ] , p i 1 [ 4 ] , thus k is even.

If n < 0 , n = q 1 q 2 q k p 1 p 2 p l , with k odd. In both cases,

n = ( q 1 ) ( q 2 ) ( q k ) p 1 p 2 p l ,

so we can write

n = s 1 s 2 s N , where s i = q i , 1 i k , s i = p i k , k + 1 i k + l = N ,

where s i 1 [ 4 ] , 1 i N .

χ n ( 1 + i ) = χ q 1 ( 1 + i ) χ q k ( 1 + i ) χ p 1 ( 1 + i ) χ p l ( 1 + i ) = i ( q 1 1 ) 4 i ( q k 1 ) 4 i ( p 1 1 ) 4 i ( p l 1 ) 4 = i ( s 1 1 ) 4 i ( s N 1 ) 4 = i i = 1 N s i 1 4 = i ( n 1 ) 4 ,

the last equality resulting of Exercise 9.44.

Conclusion : if n , n 1 [ 4 ] , n 1 , then χ n ( 1 + i ) = i ( n 1 ) 4 .

Let π = a + bi , a b = 1 a primary irreducible. As a ( 1 + i ) = a + b + i ( a + bi ) , a ( 1 + i ) a + b [ π ] , so

χ π ( a ) χ π ( 1 + i ) = χ π ( a + b ) .

As π = a + bi is primary, a + b 1 [ 4 ] .

If a + b = 1 , then χ π ( a ) χ π ( 1 + i ) = χ π ( a + b ) = 1 = i 3 ( a + b 1 ) 4 . If not, the Law of Biquadratic Reciprocity (Proposition 9.9.8) gives

χ π ( a + b ) = χ a + b ( π ) .

Now b a ( mod a + b ) , so a + bi a ( 1 i ) ia ( 1 + i ) ( mod a + b ) . Therefore

χ a + b ( π ) = χ a + b ( 1 ) χ a + b ( a ) χ a + b ( i ) χ a + b ( 1 + i ) .

Since n 1 [ 4 ] , χ n ( i ) = ( 1 ) ( n 1 ) 4 (Prop.9.8.6), thus

χ n ( 1 ) = χ n ( i 2 ) = ( 1 ) n 1 2 = 1 .

Consequently, since a + b 1 [ 4 ] , χ a + b ( 1 ) = 1 .

As a b = 1 , ( a + b ) a = 1 , thus χ a + b ( a ) = 1 (Prop 9.8.5).

a + b 1 [ 4 ] , thus χ a + b ( i ) = ( 1 ) ( a + b 1 ) 4 (Prop. 9.8.6).

From the first part of this proof, χ a + b ( 1 + i ) = i ( a + b 1 ) 4 , so

χ a + b ( π ) = χ a + b ( 1 ) χ a + b ( a ) χ a + b ( i ) χ a + b ( 1 + i ) = ( 1 ) ( a + b 1 ) 4 i ( a + b 1 ) 4 = i ( a + b 1 ) 2 i ( a + b 1 ) 4 = i 3 ( a + b 1 ) 4

Conclusion : if π = a + bi is a primary irreducible, such that a b = 1 , then

χ π ( a ) χ π ( 1 + i ) = i 3 ( a + b 1 ) 4

User profile picture
2022-07-19 00:00
Comments