Homepage › Solution manuals › Kenneth Ireland › A Classical Introduction to Modern Number Theory › Exercise 9.38
Exercise 9.38
Prove part (d) of Proposition 9.8.3.
Answers
Proposition 9.8.3(d) If is a primary irreducible then , where .
Proof. Let a primary irreducible. Then is odd, and is even, and . Then
By Lemma 6, section 7, , or .
- If , then , so
- If , then , so
Conclusion: if is a primary irreducible in , then
□
2022-07-19 00:00