Exercise 9.38

Prove part (d) of Proposition 9.8.3.

Answers

Proposition 9.8.3(d) If π is a primary irreducible then χ π ( 1 ) = ( 1 ) ( a 1 ) 2 , where π = a + bi .

Proof. Let π = a + bi a primary irreducible. Then a is odd, and b is even, and N ( π ) = a 2 + b 2 . Then

χ π ( 1 ) = ( 1 ) N ( π ) 1 4 = ( 1 ) a 2 1 4 + b 2 4 = [ ( 1 ) a + 1 2 ] a 1 2 ( 1 ) b 2 4 .

By Lemma 6, section 7, a 1 [ 4 ] , b 0 [ 4 ] , or a 3 [ 4 ] , b 2 [ 4 ] .

If a 1 [ 4 ] , b 0 [ 4 ] , then ( 1 ) a + 1 2 = 1 , ( 1 ) b 2 4 = + 1 , so χ π ( 1 ) = ( 1 ) a 1 2 .

If a 3 [ 4 ] , b 2 [ 4 ] , then ( 1 ) a + 1 2 = 1 , ( 1 ) b 2 4 = 1 , so χ π ( 1 ) = 1 = ( 1 ) a 1 2 .

Conclusion: if π is a primary irreducible in [ i ] , then

χ π ( 1 ) = ( 1 ) ( a 1 ) 2 .

User profile picture
2022-07-19 00:00
Comments