Exercise 9.44

Let n , n = s 1 s t , n 1 ( mod 4 ) , i = 1 , , t . Show ( n 1 ) 4 i = 1 t ( s i 1 ) 4 ( mod 4 ) .

Answers

Proof. If n = st , s 1 , t 1 [ 4 ] , then s = 4 k + 1 , t = 4 l + 1 , k , t , so

n = ( 4 k + 1 ) ( 4 l + 1 ) = 16 kl + 4 k + 4 l + 1 , n 1 4 = 4 kl + k + l k + l = s 1 4 + l 1 4 [ 4 ] .

Reasoning by induction on t , suppose that every product of t factors n = s 1 s 2 s t , where s i 1 [ 4 ] verifies

n 1 4 i = 1 t s i 1 4 [ 4 ] .

If n = s 1 s 2 s t s t + 1 = n s t + 1 , s i 1 [ 4 ] , then n 1 , s t + 1 1 [ 4 ] , so

n 1 4 n 1 4 + s t + 1 1 4 i = 1 t s i 1 4 + s t + 1 1 4 i = 1 t + 1 s i 1 4 [ 4 ] .

Conclusion : if n = s 1 s 2 s t , s i 1 [ 4 ] , then n 1 4 i = 1 t s i 1 4 [ 4 ] . □

User profile picture
2022-07-19 00:00
Comments