Exercise 9.4

(continuation) Show that χ γ ( ω ) = 1 , ω , or ω 2 according to whether γ is congruent to 8,2, or 5 modulo 3 λ . In particular, if q is a rational prime, q 2 ( mod 3 ) , then χ q ( ω ) = 1 , ω , or ω 2 according to whether q 8 , 2 , or 5 ( mod 9 ) . [Hint : γ = a + = 1 + 3 ( m + ) , and so γ 1 + 3 ( m + n ) ( mod 3 λ ) .]

Answers

Proof. λ = 1 ω , so ω 1 ( mod λ ) . Thus

m + m + n ( mod λ ) 3 ( m + ) 3 ( m + n ) ( mod 3 λ ) γ = 1 + 3 ( m + ) 1 + 3 ( m + n ) ( mod 3 λ )

Moreover 9 = 3 λ λ ¯ 0 ( mod 3 λ ) , thus γ is congruent modulo 3 λ to an integer between 0 and 8 of the form 3 k 1 : γ 8 , 2 or 5 ( mod 3 λ ) .

By Ex. 9.3, χ γ ( ω ) = 1 m + n 0 [ 3 ] , and m + n 0 [ 3 ] implies m + n = 3 k , k , so γ 1 + 9 k 1 8 [ 3 λ ] .

Conversely, if γ 8 1 [ 3 λ ] , then 3 λ 3 ( m + n ) , so λ m + n , and N ( λ ) N ( m + n ) , 3 ( m + n ) 2 , thus 3 m + n , m + n 0 [ 3 ] , and so χ γ ( ω ) = 1 . The two other cases are similar, so we obtain

χ γ ( ω ) = 1 m + n 0 [ 3 ] γ 8 [ 3 λ ] , χ γ ( ω ) = ω m + n 1 [ 3 ] γ 2 [ 3 λ ] , χ γ ( ω ) = ω 2 m + n 2 [ 3 ] γ 5 [ 3 λ ] .

If γ = q is a rational prime, q 8 [ 9 ] implies q 8 [ 3 λ ] , since 3 λ 9 = 3 λ λ ¯ , thus χ q ( ω ) = 1 .

Conversely, if χ q ( ω ) = 1 , then q 8 [ 3 λ ] , q 8 = μ ( 3 λ ) , μ D , therefore

( q 8 ) 2 = N ( μ ) 3 3 , 3 3 ( q 8 ) 2 , thus 3 2 q 8 and so q 8 [ 9 ] . The two other cases are similar.

χ q ( ω ) = 1 q 8 [ 9 ] , χ q ( ω ) = ω q 2 [ 9 ] , χ q ( ω ) = ω 2 q 5 [ 9 ] .
User profile picture
2022-07-19 00:00
Comments