Exercise 11.6 - EM for a finite scale mixture of Gaussians

Answers

For question (a), we advance straightforwardly:

p ( J n = j , K n = k | x n , 𝜃 ) = p ( x n , J n = j , K n = k | 𝜃 ) p ( x n , 𝜃 ) = 1 A p j q k 𝒩 ( x n | μ j , σ k 2 ) = p j q k 𝒩 ( x n | μ j , σ k 2 ) j , k p j q k 𝒩 ( x n | μ j , σ k 2 ) .

For question (b):

Q ( 𝜃 new , 𝜃 old ) = 𝔼 p ( J n , K n | x n , 𝜃 old ) [ n = 1 N log p ( x n , J n , K k | x n , 𝜃 new ) ] = n = 1 N 𝔼 p ( J n , K n | x n , 𝜃 old ) [ j = 1 m k = 1 l z 𝑗𝑘 log ( p j new q k new 𝒩 ( x n | μ j new , σ k 2 , new ) ) ] = n j , k 𝔼 p ( J n , K n | x n , 𝜃 old ) [ z 𝑗𝑘 ] ( log p j new + log q k new + log 𝒩 ( x n | μ j new , σ k 2 , new ) ) .

What left is trivial calculus. Define:

r 𝑛𝑗𝑘 = 𝔼 p ( J n , K n | x n , 𝜃 old ) [ z 𝑗𝑘 ] = p ( J n = j , K n = k | x n , 𝜃 )

For question (c), we have:

∂𝑄 μ j new = n j , k r 𝑛𝑗𝑘 μ j new log 𝒩 ( x n | μ j new , σ j 2 , new ) = n k r n j k ( x n μ j new ) σ k 2 , new .

Setting it to zero yields:

μ j new = n k r n j k x n σ k 2 , new n k r n j k σ k 2 , new .

User profile picture
2021-03-24 13:42
Comments