Homepage Solution manuals Kevin P. Murphy Machine Learning: a Probabilistic Perspective Exercise 13.7 - Prior for the Bernoulli rate parameter in the spike and slab model

Exercise 13.7 - Prior for the Bernoulli rate parameter in the spike and slab model

Answers

Recall that the prior takes the following decomposition:

p ( γ | α 1 , α 2 ) = d = 1 D p ( γ d | α 1 , α 2 ) = d = 1 D p ( γ d | π d ) Beta ( π d | α 1 , α 2 ) .

We now integrate out π d for the d -th parameter:

p ( γ d | α 1 , α 2 ) = 1 B ( α 1 , α 2 ) π d γ d ( 1 π d ) ( 1 γ d ) π d α 1 1 ( 1 π d ) α 2 1 d π d = 1 B ( α 1 , α 2 ) π d α 1 + γ d 1 ( 1 π d ) α 2 + 1 γ d 1 d π d = B ( α 1 + γ d , α 2 + 1 γ d ) B ( α 1 , α 2 ) = Γ ( α 1 + α 2 ) Γ ( α 1 ) Γ ( α 2 ) Γ ( α 1 + γ d ) Γ ( α 2 + 1 γ d ) Γ ( α 1 + α 2 + 1 ) .

Therefore( N 1 marks the number of activa parameters in γ ):

p ( γ | α 1 , α 2 ) = ( N N 1 ) Γ ( α 1 + α 2 ) N Γ ( α 1 ) N Γ ( α 2 ) N Γ ( α 1 + 1 ) N 1 Γ ( α 2 + 1 ) N N 1 Γ ( α 1 + α 2 + 1 ) N = ( N N 1 ) α 1 N 1 α 2 N N 1 ( α 1 + α 2 ) N .

Hence p ( γ ) is this case is a binomial distribution.

User profile picture
2021-03-24 13:42
Comments