Exercise 17.1 - Derivation of $Q$ function for HMM

Answers

Recall that for the auxiliay function, we are to calculate the log-likelihood w.r.t. 𝜃 with 𝐳 1 : T replaced by their expectation w.r.t. 𝜃 old :

Q ( 𝜃 , 𝜃 old ) = 𝔼 p ( 𝐳 1 : T | 𝐱 1 : T , 𝜃 old ) [ log p ( 𝐳 1 : T , 𝐱 1 : T | 𝜃 ) ] = 𝔼 p [ log { i = 1 N { p ( z i , 1 | π ) ( t = 2 T i p ( z i , t | z i , t 1 , 𝐀 ) ) ( t = 1 T i p ( x i , t | z i , t , 𝐁 ) ) } } ] = 𝔼 p [ i = 1 N k = 1 K 𝕀 [ z i , 1 = k ] log π k + i = 1 N t = 2 T i j = 1 K k = 1 K 𝕀 [ z i , t = k , z i , t 1 = j ] log 𝐀 ( j , k ) + i = 1 N t = 1 T i k = 1 K 𝕀 [ z i , t = k ] log p ( x i , t | z i , t = k , 𝐁 ) ] .

From which we obtain (17.98), (17.99) and (17.100), hence (17.97).

User profile picture
2021-03-24 13:42
Comments