Exercise 19.1 - Derivation of the log partition function

Answers

Recall the definition of the partition function:

Z ( 𝜃 ) = 𝐲 c 𝒞 ψ c ( 𝐲 c | 𝜃 c ) ,

where 𝒞 is the collection of all maximal cliques. The rest is straightforward algebra:

log Z ( 𝜃 ) 𝜃 c = 𝜃 c log 𝐲 c 𝒞 ψ c ( 𝐲 c | 𝜃 c ) = 1 Z ( 𝜃 ) 𝐲 𝜃 c c 𝒞 ψ c ( 𝐲 c | 𝜃 c ) = 1 Z ( 𝜃 ) 𝐲 ( c 𝒞 , c c ψ c ( 𝐲 c | 𝜃 c ) ) 𝜃 c ψ c ( 𝐲 c | 𝜃 c ) = 1 Z ( 𝜃 ) 𝐲 ( c 𝒞 , c c ψ c ( 𝐲 c | 𝜃 c ) ) 𝜃 c exp { 𝜃 c T ϕ c ( 𝐲 c ) } = 1 Z ( 𝜃 ) 𝐲 ( c 𝒞 ψ c ( 𝐲 c | 𝜃 c ) ) ϕ c ( 𝐲 c ) = 𝐲 ϕ c ( 𝐲 c ) ( 1 Z ( 𝜃 ) c C ψ c ( 𝐲 c | 𝜃 ) ) = 𝐲 ϕ c ( 𝐲 c ) p ( 𝐲 | 𝜃 ) = 𝔼 [ ϕ c ( 𝐲 c ) | 𝜃 ] .
User profile picture
2021-03-24 13:42
Comments