Exercise 2.8 - Conditional independence iff joint factorizes

Answers

We prove that (2.129) is tantamount to (2.130). One direction is trivial by denoting:

g ( x , z ) = p ( x | z ) ,

h ( y , z ) = p ( y | z ) .

Conversely, we have:

p ( x | z ) = y p ( x , y | z ) = y g ( x , z ) h ( y , z ) = g ( x , z ) y h ( y , z ) .

And vice versa,

p ( y | z ) = h ( y , z ) x g ( x , z ) .

Moreover, for any z :

1 = x , y p ( x , y | z ) = ( x g ( x , z ) ) ( y h ( y , z ) ) .

Thus:

p ( x | z ) p ( y | z ) = g ( x , z ) h ( y , z ) ( x g ( x , z ) ) ( y h ( y , z ) ) = g ( x , z ) h ( y , z ) = p ( x , y | z ) .
User profile picture
2021-03-24 13:42
Comments