Exercise 3.A.3.

Suppose T L ( F n , F m ) . Show that there exist scalars A j , k F for j = 1 , . . . , m and k = 1 , . . . , n such that

T ( x 1 , . . . , x n ) = ( A 1 , 1 x 1 + + A 1 , n x n , . . . , A m , 1 x 1 + + A m , n x n )

for every ( x 1 , . . . , x n ) = F n . [The exercise above shows that T has the form promised in the last item of Example 3.4.]

Answers

By the homogeneity and additivity of linear maps

T ( x 1 , . . . , x n ) = T ( x 1 , 0 , . . . , 0 ) + + T ( 0 , . . . , 0 , x n ) = x 1 T ( 1 , 0 , . . . , 0 ) + + x n T ( 0 , . . . , 0 , 1 )
(1)

A j , k F for j = 1 , . . . , m and k = 1 , . . . , n such that

T ( 1 , 0 , . . . , 0 ) = ( A 1 , 1 , . . . , A m , 1 ) T ( 0 , . . . 0 , 1 ) = ( A 1 , n , . . . , A m , n )
(2)

Thus, expanding and combining,

T ( x 1 , . . . , x n ) = ( A 1 , 1 x 1 + + A 1 , n x n , . . . , A m , 1 x 1 + + A m , n x n )

User profile picture
2025-03-22 21:23
Comments