Exercise 3.E.11

Answers

(a) By problem 3.E.8, A is an affine subset if and only if ty + ( 1 t ) x A for x , y A and t F
Define x , y A :

x = a 1 v 1 + + a m v m

y = b 1 v 1 + + b m v m

Where

a 1 + + a m = 1

and,

b 1 + + b m = 1

Now, let

z = ( 1 t ) x + ty

Clearly, z is in the form in 3.E.8, so we just need to prove that z A
So,

( 1 t ) x + ty = ( 1 t ) ( a 1 v 1 + + a m v m ) + t ( b 1 v 1 + + b m v m ) = ( 1 t ) a 1 v 1 + t ( b 1 v 1 ) + + ( 1 t ) a m v m + t b m v m = ( ( 1 t ) a 1 + t b 1 ) v 1 + + ( ( 1 t ) a m + t b m ) v m
(1)

Now define

λ j = ( 1 t ) a j + t b j

Since, λ 1 + + λ m = 1 , z A , and thus, A is an affine subset.

(b) Define U V and b V Next, define B an affine subset of V , where

B = b + U

such that

v 1 , . . . , v m b + U

Define u 1 , . . . , u m U such that

v j = b + u j

For j { 1 , . . . , m } Therefore,

λ 1 b + λ 1 + u 1 + + λ m b + λ m u m = b + λ 1 u 1 + + λ b + U
(2)

(c) Define a A

a = λ 1 v 1 + + λ m v m

Where λ 1 + + λ m = 1 Now, define u V , s.t.

u = a v 1 = λ 1 v 1 + λ m v m v 1
(3)

Since v 1 = λ 1 v 1 + λ m + v 1 ,

λ 1 v 1 + λ m v m v 1 = λ 2 ( v 2 v 1 ) + + λ m ( v m v 1 )

Now, define U = span  ( v 2 v 1 , . . . , v m v 1 )
Obviously, A v 1 + U by (3)
Therefore, dim A dim U

User profile picture
2025-06-08 14:53
Comments