Exercise 3.F.13

Answers

Proof. _(a)_

T(φ 1)(x,y,z) = φ1 T(x,y,z) = φ1(4x + 5y + 6z,7x + 8y + 9z) = 4x + 5y + 6z

T(φ 2)(x,y,z) = φ2 T(x,y,z) = φ2(4x + 5y + 6z,7x + 8y + 9z) = 7x + 8y + 9z

_(b)_ Since ψ1(x,y,z) = x, ψ2(x,y,z) = y and ψ3(x,y,z) = z, substituting these in the results from item _(a)_, we get

T(φ 1)(x,y,z) = 4ψ1(x,yz) + 5ψ2(x,y,z) + 6ψ3(x,y,z)

Thus T(φ1) = 4ψ1 + 5ψ2 + 6ψ3. Similarly, we get T(φ2) = 7ψ1 + 8ψ2 + 9ψ3. □

User profile picture
2017-10-06 00:00
Comments