Exercise 6.A.6

Answers

Proof. Suppose u,v = 0. Note that u is orthogonal to any multiple of v. Then, by the Pythagorean Theorem (6.13), we have

||u + av||2 = ||u||2 + |a|||v||2 ||u||2.

Taking the square root of both sides completes the forward direction.

For the converse, we will prove the contrapositive, that is, if u,v0, then ||u|| > ||u + av|| for some a 𝔽.

Suppose u,v0. Note that neither u nor v can equal 0. We have

||u + av||2 = u + av,u + av = u,u + u,av + av,u + av,av = ||u||2 + u,av + av,u + |a|2||v||2 < ||u||2

where the last line follows provided that u,av + av,u + |a|2||v||2 < 0. By 6.14, we can write u = cv + w for some c 𝔽 and w V such that v,w = 0. Note that c0, because v,v0 and

0u,v = cv + w,v = cv,v + w,v = cv,v

Choose a = c, then

u,av + av,u + |a|2||v||2 = cv + w,av + av,cv + w + |a|2||v||2 = cv,av + w,av + av,cv + av,w + |a|2||v||2 = v,v + ac¯v,v + |a|2||v||2 = ( + ac¯ + ||c||2)||v||2 = (cc¯ cc¯ + ||c||2)||v||2 = |c|2||v||2 < 0

User profile picture
2017-10-06 00:00
Comments