Exercise 7.B.3

Answers

Proof. Define T L(3) by

Te1 = 2e1 Te2 = 3e2 Te3 = 3(e1 + e2 + e3),

where e1,e2,e3 is the standard basis of 3. The matrix of T with respect to same basis is

M(T) = (203 0 3 3 003 ).

Therefore, the only eigenvalues of T are 2 and 3 (by 5.32). Moreover

(T2 5T + 6I)e 3 = T2e 3 5Te3 + 6Ie3 = T(3e1 + 3e2 + 3e3) 15(e1 + e2 + e3) + 6e3 = 6e1 + 9e2 + 9(e1 + e2 + e3) 15(e1 + e2 + e3) + 6e3 = 3e2 0.

Therefore, T2 5T + 6I0. □

User profile picture
2017-10-06 00:00
Comments