Exercise 8.C.10

Answers

Proof. Let λ1,,λm denote the distinct eigenvalues of T and d1,,dm their corresponding multiplicities. Then

p(z) = (z λ1)d1 (z λm)dm .

The eigenvalues of T1 are 1 λ1 ,, 1 λm and by Exercise 3 in section 8A they have multiplicities d1,,dm. Thus

q(z) = (z 1 λ1 ) d1 (z 1 λm ) dm = zd1 (1 1 λ1z )d1 zdm (1 1 λmz )dm = zd1++dm (1 1 λ1z )d1 (1 1 λmz )dm = zdim V (1 1 λ1z )d1 (1 1 λmz )dm = zdim V 1 λ1d1 (λ1 1 z )d1 1 λmdm (λm 1 z )dm = zdim V 1 λ1d1λmdm (λ1 1 z )d1 (λm 1 z )dm = zdim V (1)d1++dm λ1d1λmdm (1 z λ1) d1 (1 z λm) dm = zdim V (1)d1++dm λ1d1λmdm p (1 z ) = zdim V 1 p(0)p (1 z ).

User profile picture
2017-10-06 00:00
Comments