Exercise 9.A.2

Answers

Proof. Let u1,u2,v1,v2 V . Then

T ((u1 + iv1) + (u2 + iv2) ) = T ((u1 + u2) + i(v1 + v2) ) = T(u1 + u2) + iT(v1 + v2) = (Tu1 + iTv1) + (Tu2 + iTv2) = T(u1 + iv1) + T(u2 + iv2).

Hence T satisfies the additivity property of linear maps. Now let u,v V and a,b . Then

T ((a + bi)(u + iv) ) = T ((au bv) + i(av + bu) ) = T(au bv) + iT(av + bu) = (aTu bTv) + i(aTv + bTu) = (a + bi)(Tu + iTv) = (a + bi)T(u + iv)

where the fourth line follows from the definition of complex scalar multiplication on V . Hence T satisfies the homogeneity property of linear maps. Therefore T is a linear map. □

User profile picture
2017-10-06 00:00
Comments