Exercise 9.A.9

Answers

Proof. Suppose by contradiction that T L(7) is such that T2 + T + I is nilpotent. Then by Exercise 7 (T2 + T + I)

Cisalsonilpotentanditsminimalpolynomialisoftheformz^jforsomepositiveintegerj(because0isitsonlyeigenvalue,seeExercise7insection8Aand8.49).Wehave

z2 + z + 1 = (z 1 + i3 2 ) (z 1 i3 2 ).

Define p P() by

p(z) = (z2 + z + 1)j.

Then p has no real roots and p(T

C) = 0.Thisisacontradiction,becausepmustbeapolynomialmultipleoftheminimalpolynomialofT_C(by8.46)andtheminimalpolynomialofT_Chasatleastonerealroot(see9.19,9.11and8.49).

User profile picture
2017-10-06 00:00
Comments