Exercise 9.B.3

Answers

Proof. For u1,u2,v1,v2 V we have

(u1 + iv1) + (u1 + iv2),x + iy = (u1 + u2) + i(v1 + v2),x + iy = u1 + u2,x + v1 + v2,y + (v1 + v2,xu1 + u2,y )i = u1,x + u2,x + v1,y + v2,x + (v1,xu1,y )i + (v2,xu2,y )i = u1 + iv1,x + iy + u2 + iv2,x + iy.

Therefore it satisfies additivity in the first slot. For a,b , we have

(a + bi)(u + iv),x + iy = (au bv) + i(av + bu),x + iy = au bv,x + av + bu,y + (av + bu,xau bv,y )i = au,xbv,x + av,y + bu,y + (av,xau,y )i + (bu,x + bv,y)i = au,x + av,y + (av,xau,y )i bv,x + bu,y + (bu,x + bv,y)i = au + iv,x + iy + bi (iv,x iu,y + u,x + v,y ) = au + iv,x + iy + biu + iv,x + iy = (a + bi)u + iv,x + iy

Hence homogeneity in the first slot is satisfied. For positivity, we have

u + iv,u + iv = u,u + v,v + (v,uu,v )i = u,u + v,v 0,

where the second equality follows because V is a real inner product space. The equation above also displays definiteness, because the left side equals 0 if and only if u = v = 0, in other words, if u + iv = 0. For conjugate symmetry, we have

u + iv,x + iy = u,x + v,y (v,xu,y)i¯ = x,u + y,v (x,vy,u)i¯ = x + iy,u + iv¯.

User profile picture
2017-10-06 00:00
Comments