Exercise 1.2.12

Let y 1 = 6 , and for each n N define y n + 1 = ( 2 y n 6 ) 3

(a)
Use induction to prove that the sequence satisfies y n > 6 for all n N .
(b)
Use another induction argument to show the sequence ( y 1 , y 2 , y 3 , ) is decreasing.

Answers

(a)
Suppose for induction that y n > 6 , our base case clearly satisfies y 1 > 6 . then y n + 1 = ( 2 y n 6 ) 3 y n = ( 3 y n + 1 + 6 ) 2 > 6 y n + 1 > ( 2 ( 6 ) 6 ) 3 = 6

Thus y n + 1 > 6

(b)
Suppose y n + 1 < y n , the base case 2 < 6 works. Now y n + 1 < y n 2 y n + 1 < 2 y n 2 y n + 1 6 < 2 y n 6 ( 2 y n + 1 6 ) 3 < ( 2 y n 6 ) 3 y n + 2 < y n + 1

Thus ( y n ) is decreasing.

User profile picture
2022-01-27 00:00
Comments